core.orm.mixins.content ======================= .. py:module:: core.orm.mixins.content Attributes ---------- .. autoapisummary:: core.orm.mixins.content._T core.orm.mixins.content._MarkupT core.orm.mixins.content.IMMUTABLE_TYPES core.orm.mixins.content.content_property core.orm.mixins.content.data_property core.orm.mixins.content.meta_property core.orm.mixins.content.dictionary_based_property_factory Classes ------- .. autoapisummary:: core.orm.mixins.content._dict_property_factory core.orm.mixins.content.ContentMixin core.orm.mixins.content.dict_property core.orm.mixins.content.dict_markup_property Functions --------- .. autoapisummary:: core.orm.mixins.content.is_valid_default core.orm.mixins.content.dict_property_factory Module Contents --------------- .. py:class:: _dict_property_factory Bases: :py:obj:`Protocol` Base class for protocol classes. Protocol classes are defined as:: class Proto(Protocol): def meth(self) -> int: ... Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing). For example:: class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:: class GenProto(Protocol[T]): def meth(self) -> T: ... .. py:method:: __call__(key: str | None = None, default: None = None, value_type: None = None) -> dict_property[Any | None] __call__(key: str | None, default: _T | collections.abc.Callable[[], _T], value_type: None = None) -> dict_property[_T] __call__(key: str | None = None, *, default: _T | collections.abc.Callable[[], _T], value_type: None = None) -> dict_property[_T] __call__(key: str | None, default: None, *, value_type: type[_T]) -> dict_property[_T] __call__(key: str | None = None, default: None = None, *, value_type: type[_T]) -> dict_property[_T] __call__(key: str | None, default: _T | collections.abc.Callable[[], _T], value_type: type[_T]) -> dict_property[_T] __call__(key: str | None = None, *, default: _T | collections.abc.Callable[[], _T], value_type: type[_T]) -> dict_property[_T] .. py:data:: _T .. py:data:: _MarkupT .. py:data:: IMMUTABLE_TYPES .. py:class:: ContentMixin Mixin providing a meta/content JSON pair. Meta is a JSON column loaded with each request, content is a JSON column loaded deferred (to be shown only in the detail view). .. py:property:: meta :type: sqlalchemy.schema.Column[dict[str, Any]] .. py:property:: content :type: sqlalchemy.schema.Column[dict[str, Any]] .. py:function:: is_valid_default(default: object | None) -> bool .. py:class:: dict_property(attribute: str, key: str | None = None, default: None = None, value_type: None = None) dict_property(attribute: str, key: str | None, default: _T | collections.abc.Callable[[], _T], value_type: None = None) dict_property(attribute: str, key: str | None = None, *, default: _T | collections.abc.Callable[[], _T], value_type: None = None) dict_property(attribute: str, key: str | None, default: None, *, value_type: type[_T]) dict_property(attribute: str, key: str | None = None, default: None = None, *, value_type: type[_T]) dict_property(attribute: str, key: str | None, default: _T | collections.abc.Callable[[], _T], value_type: type[_T]) dict_property(attribute: str, key: str | None = None, *, default: _T | collections.abc.Callable[[], _T], value_type: type[_T]) Bases: :py:obj:`sqlalchemy.orm.interfaces.InspectionAttrInfo`, :py:obj:`Generic`\ [\ :py:obj:`_T`\ ] Enables access of dictionaries through properties. Usage:: class Model(ContentMixin): access_times = dict_property('meta') This creates a property that accesses the meta directory with the key 'access_times'. The key is implicitly copied from the definition. Another way of writing this out would be:: class Model(ContentMixin): access_times = dict_property('meta', 'access_times') As is apparent, the 'access_times' key is duplicated in this case. Usually you do not need to provide the name. The exception being if you want the property name and the dictionary key to differ:: class Model(ContentMixin): access_times = dict_property('meta', 'access') Here, the key in the dictionary is 'access', while the property is 'access_times'. Since we often use the same kind of dictionaries we can use the builtin properties that are scoped to a specific dictionary:: class Model(ContentMixin): access_times = meta_property() This is equivalent to the initial example. We can also create our own scoped properties as follows: foo_property = dict_property_factory('foo') class Model: foo = {} bar = foo_property() Here, model.bar would read model.foo['bar']. Dict properties are compatible with typical python properties, so the usual getter/setter/deleter methods are also available:: class Model(ContentMixin): content = meta_property() @content.setter def set_content(self, value): self.meta['content'] = value self.meta['content_html'] = to_html_ul(value) @content.deleter def del_content(self): del self.meta['content'] del self.meta['content_html'] This also behaves like a hybrid_property in that you can use these properties inside select and filter statements, if you provider a custom getter you will also need to provide a custom expression, otherwise we will return an expression which retrieves the value from the JSON column:: class Model(ContentMixin): names = meta_property(default=list) session.query(Model).filter(Model.names.contains('foo')) By default that will mean that the RHS of a comparison will also expect a JSONB object, but if you explicitly pass in a value_type or a default that is not None, then we will try to first convert to that type, so type coercion is a bit more flexible:: class Model(ContentMixin): name = meta_property(value_type=str) session.query(Model.name) .. py:attribute:: is_attribute :value: True True if this object is a Python :term:`descriptor`. This can refer to one of many types. Usually a :class:`.QueryableAttribute` which handles attributes events on behalf of a :class:`.MapperProperty`. But can also be an extension type such as :class:`.AssociationProxy` or :class:`.hybrid_property`. The :attr:`.InspectionAttr.extension_type` will refer to a constant identifying the specific subtype. .. seealso:: :attr:`_orm.Mapper.all_orm_descriptors` .. py:attribute:: custom_getter :type: collections.abc.Callable[[Any], _T] | None .. py:attribute:: custom_expression :type: collections.abc.Callable[[type[Any]], sqlalchemy.sql.ColumnElement[_T]] | None .. py:attribute:: custom_setter :type: collections.abc.Callable[[Any, _T], None] | None .. py:attribute:: custom_deleter :type: collections.abc.Callable[[Any], None] | None .. py:attribute:: attribute .. py:attribute:: key :value: None .. py:attribute:: default :value: None .. py:attribute:: value_type :value: None .. py:attribute:: update_expr :value: None .. py:method:: __set_name__(owner: type[object], name: str) -> None Sets the dictionary key, if none is provided. .. py:property:: getter :type: collections.abc.Callable[[collections.abc.Callable[[Any], _T]], Self] .. py:property:: setter :type: collections.abc.Callable[[collections.abc.Callable[[Any, _T], None]], Self] .. py:property:: deleter :type: collections.abc.Callable[[collections.abc.Callable[[Any], None]], Self] .. py:property:: expression :type: collections.abc.Callable[[collections.abc.Callable[[Any], sqlalchemy.sql.ColumnElement[_T]]], Self] .. py:method:: _expr(owner: type[Any]) -> sqlalchemy.orm.attributes.QueryableAttribute | None .. py:method:: __get__(instance: None, owner: type[object]) -> sqlalchemy.orm.attributes.QueryableAttribute | None __get__(instance: object, owner: type[object]) -> _T .. py:method:: __set__(instance: object, value: _T) -> None .. py:method:: __delete__(instance: object) -> None .. py:class:: dict_markup_property(attribute: str, key: str | None = None, default: None = None) dict_markup_property(attribute: str, key: str | None, default: markupsafe.Markup) dict_markup_property(attribute: str, key: str | None = None, *, default: markupsafe.Markup) Bases: :py:obj:`dict_property`\ [\ :py:obj:`_MarkupT`\ ] Enables access of dictionaries through properties. Usage:: class Model(ContentMixin): access_times = dict_property('meta') This creates a property that accesses the meta directory with the key 'access_times'. The key is implicitly copied from the definition. Another way of writing this out would be:: class Model(ContentMixin): access_times = dict_property('meta', 'access_times') As is apparent, the 'access_times' key is duplicated in this case. Usually you do not need to provide the name. The exception being if you want the property name and the dictionary key to differ:: class Model(ContentMixin): access_times = dict_property('meta', 'access') Here, the key in the dictionary is 'access', while the property is 'access_times'. Since we often use the same kind of dictionaries we can use the builtin properties that are scoped to a specific dictionary:: class Model(ContentMixin): access_times = meta_property() This is equivalent to the initial example. We can also create our own scoped properties as follows: foo_property = dict_property_factory('foo') class Model: foo = {} bar = foo_property() Here, model.bar would read model.foo['bar']. Dict properties are compatible with typical python properties, so the usual getter/setter/deleter methods are also available:: class Model(ContentMixin): content = meta_property() @content.setter def set_content(self, value): self.meta['content'] = value self.meta['content_html'] = to_html_ul(value) @content.deleter def del_content(self): del self.meta['content'] del self.meta['content_html'] This also behaves like a hybrid_property in that you can use these properties inside select and filter statements, if you provider a custom getter you will also need to provide a custom expression, otherwise we will return an expression which retrieves the value from the JSON column:: class Model(ContentMixin): names = meta_property(default=list) session.query(Model).filter(Model.names.contains('foo')) By default that will mean that the RHS of a comparison will also expect a JSONB object, but if you explicitly pass in a value_type or a default that is not None, then we will try to first convert to that type, so type coercion is a bit more flexible:: class Model(ContentMixin): name = meta_property(value_type=str) session.query(Model.name) .. py:attribute:: custom_expression .. py:method:: __get__(instance: None, owner: type[object]) -> sqlalchemy.orm.attributes.QueryableAttribute | None __get__(instance: object, owner: type[object]) -> _MarkupT .. py:method:: __set__(instance: object, value: _MarkupT) -> None .. py:function:: dict_property_factory(attribute: str) -> _dict_property_factory .. py:data:: content_property .. py:data:: data_property .. py:data:: meta_property .. py:data:: dictionary_based_property_factory